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Abstract
Vascular endothelial growth factor (VEGF), in 
addition to its essential role in the processes of 
vascularization and angiogenesis, exerts direct 
effects on neural cells in the central nervous 
system. There is abundant evidence indicating that 
VEGF protects neurons against cell death induced 
by a variety of insults, including hypoxia/ischemia 
and seizures. Recent work has demonstrated the 
expression of VEGF and its receptors in neurons 
and has revealed that VEGF can act as a 
neurotrophic factor to regulate neurogenesis and 
mediate the effects of enriched environment and 
antidepressants on hippocampal plasticity. Current 
studies from our laboratory and those of others 
have found that VEGF can activate divergent 
signaling components to regulate excitatory 
synaptic transmission in hippocampal neurons. 
Here we present an overview on current 
understanding of cellular and molecular 
mechanisms by which VEGF signaling is regulated 
in neural cells and discuss the recent advances in 
the understanding of how VEGF signaling 
regulates excitatory synaptic transmission in 
hippocampal neurons. The role for VEGF in 
regulating synaptic plasticity will be also 
discussed in the article. 
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Vascular endothelial growth factor (VEGF) is a 

family of basic, heparin-binding, homodimeric 

glycoproteins that were originally found in the 

endothelial cells (1) with high potency of 

angiogenesis (2), vascular permeability (3) and 

endothelial proliferation (4). The VEGF family 

includes VEGF-A, placental-derived growth factor 

(PlGF), VEGF-B, VEGF-C, VEGF-D in mammals 

and two exogenous VEGF subtypes, virus genome-

encoded VEGF (VEGF-E) and snake venom-derived 

VEGF (VEGF-F) (5). VEGF-A is the protypical 

member of the VEGF family. Through alternative 

exon splicing, human VEGF-A gene gives rise to at 

least six different transcripts, encoding isoforms of 

121 (VEGF-A120 in mouse), 145, 165 (VEGF-A164 in 

mouse), 183, 189 and 206 amino acid residues (6, 7). 

VEGF121 and VEGF165 are secreted in soluble form, 

while VEGF145, VEGF189 and VEGF206 are bound to 

cell-surface heparin-containing proteoglycans in the 

extracellular matrix. VEGF exerts its biological 

functions via activation of the protein tyrosine 

kinase receptors, VEGF receptor 1 (VEGFR-1, Flt-1) 

and VEGFR-2 (KDR/Flk-1), which differ 

considerably in signaling properties (8). VEGFR-1 

and VEGFR-2 are structurally similar, consisting of 

an extracellular ligand-binding domain with seven 

immunoglobulin-like domains in the extracellular 

domain, a single transmembrane region and an 

intracellular consensus tyrosine kinase domain that 

is interrupted by a kinase-insert domain (9). Binding 

by VEGF triggers a rapid tyrosine phosphorylation 

of the receptors, which in turn allows the receptors 

to associate with various effector molecules such as 

the phosphatidylinositol 3-kinase (PI3K), Shc, Grb2, 

and the phosphatases SHP-1 and SHP-2. In 

addition, VEGF receptor activation can trigger
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Table 1. VEGF exerts direct effects on excitatory synaptic transmission 
 

VEGF subtype Preparation Effect Signaling pathway Reference 

VEGF165 Rat hippocampal (1) Decrease PS ND 18 

(200 ng/ml) slices (CA1, CA3 and DG) (2) Suppress spontaneous  

burst discharges 

  

VEGF165 Rat brainstem (1) Decrease evoked  ND 19 

(200 ng/ml) slices (hypoglossal motor neuron) potential   

VEGF165 Rat hippocampal (1) Increase fEPSP slope VEGFR2/ 20 

(10 ng/ml) slices (CA1) (2) Enhance LTP induction CaMKII/ERK  

VEGF164 Rat hippocampal (1) Increase mEPSC VEGFR2 21 

(1 ng/ml) neuron culture Frequency   

 

fEPSP, field excitatory postsynaptic potential; PS, population spike; DG, dentate gyrus; LTP, long-term potentiation; 
mEPSC, miniature excitatory postsynaptic current; CaMKII, Ca2+/calmodulin-dependent protein kinase II; ERK, 
extracellular signal-regulated kinase; ND, not determined. 

 

activation of the mitogen-activated protein kinase 

(MAPK) signaling cascade via Raf stimulation 

leading to gene expression and cell proliferation, 

activation of PI3K leading to Akt activation and cell 

survival, activation of phospholipase C and protein 

kinase C leading to cell proliferation, 

vasopermeability and angiogenesis (8).  

Beyond its well-established effects on vasculature, 

recent findings reveal that VEGF has multiple 

neurotrophic effects (10, 11). Studies involving the 

central nervous system (CNS) have demonstrated 

localization of VEGF and its receptors on neurons and 

astrocytes (12, 13). It has also been reported that 

VEGF induces neuronal outgrowth (14) and provides 

neuroprotection, particularly after ischemia or spinal 

injury (15, 16). Furthermore, VEGF has been shown 

to act as a neurotrophic factor to mediate the effect of 

enriched environment on neurogenesis and cognition 

(17). In addition, VEGF has been implicated in the 

regulation of excitatory synaptic transmission (Table 

1). For instance, extracellular field potential 

recordings on rat hippocampal slices showed that 

application of exogenous VEGF165 (200 ng/ml) 

decreased the evoked responses of hippocampal 

neurons to synaptic stimulation in each of the major 

glutamatergic pathways of the trisynaptic circuitry 

(18). In addition, VEGF165 suppressed spontaneous 

discharges in hippocampal slices from pilocarpine-

treated rats but has little effect on bicuculline-

induced spontaneous discharges in hippocampal 

slices from control rats (18). McCloskey et al (19) also 

found that the expression of VEGF in hypoglossal 

motor neurons increased after seizure and application 

of exogenous VEGF165 reduced depolarizing input to 

hypoglossal motor neurons in a brainstem slice 

preparation without an apparent influence on passive 

and active membrane properties. In contrast, a more 

recent study showed that a brief bath application of 

VEGF165 (10 ng/ml) elicited a rapid and persistent 

enhancement of synaptic transmission in the 

hippocampal CA1 region through the activation of 

either Ca2+/calmodulin-dependent protein kinase II 

(CaMKII) or extracellular signal-regulated protein 

kinase (ERK) signaling (20). In our recent work, 

using both pharmacological and genetic approaches, 

we have extended these findings by showing that 

hypoxia-inducible factor-1 (HIF-1) accumulation 

can enhance excitatory synaptic transmission in 

hippocampal neuron cultures by regulating 

production of VEGF (21). Our results also indicate 

that treatment of hippocampal neuron cultures with 

VEGF164 (1 ng/ ml) for 1 or 12 h elicits a significant 

increase in the frequency but not the amplitude of 

miniature excitatory postsynaptic currents 

(mEPSCs) and that this enhancement is blocked by 

the selective VEGFR-2 inhibitors or knockdown of 

VEGFR-2 expression by shRNA. The observed 

increase in mEPSC frequency by VEGF treatment is 

most likely attributable to an enhancement of 

presynaptic release probability. The lack of effect of 

VEGF on mEPSC kinetics also implies that its 

action on glutamatergic transmission is not 

mediated by a change in postsynaptic 

responsiveness to glutamate. The reasons for these 

discrepancies remain unclear. They may be 

attributable to use of different doses and time scales  
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Figure 1. Proposed models for the regulation of VEGF expression in neurons. Binding of IGF-1 to extracellular IGF-1 receptors triggers 

activation of PI3K/Akt/mTOR signaling pathway and leads to increased HIF-1 protein expression. HIF-1 then dimerizes with HIF-1 to form 
the HIF-1 complex, which in turn translocates into the nucleus and binds to hypoxia response elements of the VEGF genes to activate 

transcription. Ubiquitin-dependent HIF-1 degradation is inhibited under hypoxic condition, leading to accumulation and translocation from 

cytoplasm to nucleus to induce transcriptional activation of the VEGF genes. The NF-B activation pathway may play an adjuvant role in positive 
regulation of VEGF transcription. Growth factors or cytokines may activate PI3K/Akt or Ras/Raf/MEK/ERK signaling cascades, resulting in 

increased NF-B activation that upregulates VEGF gene transcription. Activated Akt may increase IκB phosphorylation and promotes its 

degradation, which in turn increases the release of NF-κB from IκB and allows the activated NF-B to enter the nucleus and ultimately promote 
VEGF gene transcription. 
 

of VEGF challenges, leading to activation of 

different cellular events that vary in mode of action. 

Further studies would be necessary to explore this 

conflict issue.  

VEGF expression has been localized to 

subpopulations of neurons in the developing and 

mature CNS (22-24). VEGF gene and protein 

expression is increased in both glial cells and 

neurons of the ischemic brain (25). Moreover, use of 

an in vitro culture model demonstrates that 

neuronal VEGF expression is hypoxia-inducible (26). 

Hypoxia-inducible factor-1 (HIF-1), consisting of 

HIF-1 and HIF-1 subunit, is a dominant 

transcriptional factor to regulate VEGF expression 

in the neural cells. HIF-1 is primarily regulated at 

the level of protein stability. HIF-1 protein is 

rapidly degraded by the ubiquitin-proteosome 

system under normoxic conditions (27, 28). HIF-1 

degradation is inhibited under hypoxic conditions, 

leading to accumulation and translocation from 

cytoplasm to nucleus, where it dimerizes with HIF-

1 to form the transcriptionally active HIF-1 

complex (29). The activated HIF-1 complex binds to 

specific hypoxia response elements (HREs) of target 

genes and associates with transcriptional 

coactivators to induce gene expression (30). While 

HIF-1 is regulated mainly by oxygen tension, it is 

noteworthy that HIF-1 is also regulated by oxygen-

independent mechanisms. For example, HIF-1 has 

been shown to be activated in response to insulin-

like growth factor-1 (IGF-1) in cancer cells and 

epithelial cell lines, leading to VEGF transcription 

(31, 32). Previous study has also reported that 

activation of HIF-1 in the CNS is involved in the 

mechanism by which IGF-1 promotes cell survival 

after cerebral ischemia (33). Our recent study has 

indicated that IGF-1 increases expression of HIF-1 

through activation of the PI3K/Akt/mammalian 
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target of the rapamycin (mTOR) signaling pathway 

and leads to increased VEGF secretion in 

hippocampal culture neurons (Figure 1) (21). 

Another transcription factor that may play a role in 

positive regulation of VEGF transcription is NF-B. 

Many growth factors and cytokines have been shown 

to induce transcription of the VEGF gene through 

NF-B binding to the VEGF promoter in cancer cells 

(34) and endothelial cells (35). However, the role of 

NF-B in transcriptional regulation of VEGF in 

neurons remains to be elucidated.  

Despite the clear significance of the role of VEGF 

in regulating excitatory synaptic transmission, a 

recent study showed that VEGF application prior to 

high-frequency stimulation of hippocampal neurons 

increases the induction of long-term potentiation 

(20), a putative cellular mechanism underlying 

learning and memory. In addition, there is strong 

evidence that neuronal VEGF has an additional role 

in linking hippocampal activity with neurogenesis, 

learning and memory (17). Consistent with idea that 

VEGF promotes synaptic plasticity and boosts 

memory, transgenic mice engineered to overexpress 

VEGF or virus-mediated VEGF gene transfer rats 

have been shown to perform better in associative 

and spatial memory tasks (17, 36). In addition, 

intrahippocampal administration of VEGFR-2 

antagonists following spatial training impairs long-

term memory (37). Moreover, pharmacological 

stabilization of HIF-1α expression by application of 

prolyl-hydroxylase inhibitors results in the elevation 

of VEGF concentration in the hippocampus and 

contributes to a long-lasting improvement of 

hippocampus-dependent memory performance (38). 

Taken together, these findings support a role for 

VEGF-mediated signaling in long-term memory. 

VEGF expression in the hippocampus is also 

considered important for mediating some of the 

behavioral effects of antidepressants (39). 
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